分类
成考高起点 2023-05-03作者:匿名 来源:本站整理
2023年成考高起点每日一练《数学(理)》5月3日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()
答 案:C
解 析:由题可知向量a=(2,3,m),故,解得m=0.
2、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()
答 案:A
解 析:
3、如果不共线的向量a和b有相等的长度,则(a+b)(a-b)=()
答 案:A
解 析:(a+b)(a-b)=
4、已知α∩β=a,b⊥β,b在α内的射影是b’,那么b'和α的关系是()
答 案:B
解 析: ∴由三垂线定理的逆定理知,b在α内的射影b'⊥α,故选B
主观题
1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得
所以AB =4.因此
所以
4、设函数f(x)=
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求 f(x)的极值
答 案:(Ⅰ)函数的定义域为
(Ⅱ)
填空题
1、lg(tan43°tan45°tan47°)=()
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0
2、函数的定义域是()
答 案:
解 析:所以函数
的定义域是
相关文章