分类
成考高起点 2025-04-24作者:匿名 来源:本站整理
2025年成考高起点每日一练《数学(文史)》4月24日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、某密码锁的密码是由4位数字组成,一次能打开该密码锁的概率是()。
答 案:C
2、函数f(x)=sinx+x3()。
答 案:B
3、甲、乙两个人各进行一次射击,甲击中目标的概率是0.2,乙击中目标的概率是0.7,则甲、乙两人都击中目标的概率是()。
答 案:A
解 析:本题属于相互独立事件同时发生的概率,设A为甲击中目标的事件,B为乙击中目标的事件,P(A)=O.2,P(B)=0.7,P(A·B)=P(A)·P(B)=O.2×0.7=0.14,故应选A。
4、过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是()。
答 案:C
主观题
1、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.
答 案:设双曲线的方程为 则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为
令设焦点F2(c,0)到渐近线
的距离为d,则
即从双曲线
的一个焦点F2(c,0)到一条渐近线
的距离等于虚半
轴的长b,由上述推导过程可知,点F2到渐近线
以及点F1(-c,0)到渐近线
的距离都等。
由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.
解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.
2、等差数列{an}的通项公式为an=3n-1,在{an}中,每相邻的两项之间插人三项,构成新的等差数列{bn}. (Ⅰ)求{bn}的通项公式; (Ⅱ)求{bn}前10项的和.
答 案: 考点本题主要考查等差数列的通项公式和前n项和公式的运用,是成人高考常见题型.
3、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。
答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’
=x2-a+2x(x-4)
=3x2-8x-a.
(Ⅱ)由于f’(-1)=3+8-a=8,得a=3.
令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6
4、一艘渔船在航行中遇险,发出警报,在遇险地点西南10海里处有一艘货轮,接收到报时,发现遇险渔船正以9海里/小时的速度与沿南偏东75°方向向某小岛靠近,如果要在40分内将这艘渔船救出,求货轮航行的方向和速度。
答 案:货轮沿东偏北21.8°的方向,以21海里/小时的船速航行。
填空题
1、log2[log2(log381)]=______。
答 案:1
解 析:由于log381=log334=4,于是 原式=log2(log24)=log22=1。
2、已知tanα=2,则=______。
答 案:
相关文章